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Abstract: 
 The gender difference (gender gap) in mortality due to coronary heart disease 
(CHD) decreases with age. This relationship has not been well characterized in diverse 
populations. The purpose of this study wad to examine the age specific coronary heart 
disease mortality rates in men compared with women through telegrapher’s process with 
the help of uniform distribution. 
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1. Introduction: 

Although Coronary Heart Disease (CHD) is the leading cause of death in men and 
women, age-specific CHD mortality rates are strikingly higher in men compared with 
women. In general, both CHD incidence and mortality rates in women lag 10 years 
behind those of men [10]. It is well established that the gender difference is more 
pronounced at younger ages, such that 1 in 17 women has had a coronary event before 
age 60, in contrast with 1 in 5 men. The gender difference has been reported to decrease 
with age and after age 60, CHD accounts for 1 in 4 deaths in both sexes.  

Previous United States based studies addressing gender differences in CHD 
mortality have been limited to predominantly Caucasian populations [7], [18] & [19]. 
Many studies have also examined black and white differences in CHD mortality, but 
none has directly compared the gender gap between ethnic groups [2], [5], [8], [20] & 
[21]. The gender gap in CHD mortality has been attributed to various factors. 
Differential prevalence and impact of traditional cardiovascular risk factors have been 
shown to account for part but not all of the gender difference.  

Estrogen has been implicated as a possible protective factor in women because 
of an observed 2-fold increased CHD incidence in surgically postmenopausal vs 
premenopausal women of the same age. However, the use of hormone replacement 
therapy (HRT) has not been shown to reduce CHD events in postmenopausal women 
and the role of endogenous estrogen in the cardio protection of women compared with 
men is not completely understood. International data suggest that geography, secular 
trends, and environmental factors also play a role in gender differences in CHD 
occurrence [20]. The purpose of this study wad to examine the age specific coronary 
heart disease mortality rates in men compared with women through telegrapher’s 
process with the help of uniform distribution. 

In this paper we consider the two valued integrated telegraph signal with 
rightward velocity 𝑐1 and leftward velocity −𝑐2 (𝑐1, 𝑐2 > 0) and rates 𝜆1, 𝜆2 of the 
occurrence of velocity switches. The classical case (𝑐1 = 𝑐2 = 𝑐; 𝜆1 = 𝜆2 = 𝜆) has been 
studied in many papers and important probabilistic distributions and representations 
have been obtained independently by various authors and by different methods (for 
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example [3], [4], [6] & [16]). When 𝑐1 ≠ 𝑐2  and 𝜆1 ≠ 𝜆2, the motion differs from that in 
the classical case in that it displays a drift whose components have also been studied 
(See [1], [14] & [15]). One component of the drift depends on the different velocities and 
the other on the different rates. These components differ substantially in the 
mathematical treatment they necessitate. 

In particular, when 𝜆1 ≠ 𝜆2, the elimination of the drift requires the 
Lorentz transformation of Special Relativity Theory. This was first noted by Cane [1] 
and further examined in [14] & [15] but nowhere has an accurate analysis of the 
transformation and its probabilistic implications been carried out. Here we discuss the 
random motion in the original frame of reference (𝑥, 𝑡) and in the related relativistic 

one, (𝑥′, 𝑡′) where the drift has been eliminated. The space coordinate 𝑥′ must move 

with velocity 𝑣𝑟 =
𝑐1−𝑐2

2
+

 𝜆2− 𝜆1  𝑐1+𝑐2 

2 𝜆2+ 𝜆1 
=

𝜆2𝑐1−𝜆1𝑐2

 𝜆1+ 𝜆2
 with respect to the original frame of 

reference and the time 𝑡′ must either be speeded up or slowed down with respect to 𝑡, 

in order to eliminate the drift. In the frame (𝑥′, 𝑡′), the particle moves with velocities 

𝑐′ = ±
2 𝑐1+𝑐2 𝜆1  𝜆2

 𝜆1+ 𝜆2 2
 initially chosen with equal probability 1/2, and the switches from 

positive to negative values and vice versa are governed by a homogeneous Poisson 

process with rate 𝜆′ = ±
2𝜆1𝜆2

𝜆1+ 𝜆2
  

Therefore, the probabilist, in the reference (𝑥′, 𝑡′) attributes to the 

random position of the particle, a symmetric distribution 𝑝 = 𝑝(𝑥′, 𝑡′). Returning to the 
original coordinates and writing down the asymmetric distribution 𝑝 = 𝑝(𝑥, 𝑡) requires 
careful attention due to the fact that here, differently from the Special Relativity theory, 
the adjustment of time depends on the random changes of the rates. In this paper we 
obtain the distribution 𝑝 = 𝑝(𝑥, 𝑡) by means of the usual model, based on Fourier 
transforms.  
2. Features of Motion and Governing Equation: 

We assume that at time 𝑡 = 0, a particle starts from the origin and that its 
initial velocity is the two valued random variable. 

                                           𝑉 0 =  
𝑐1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

1

2

−𝑐2 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
1

2

     

where 𝑐1, 𝑐2 are positive, real numbers. The current velocity 𝑉 = 𝑉(𝑡), 𝑡 > 0 switches 
from 𝑐1 to −𝑐2 after an exponentially distributed time with parameter 𝜆1 and from −𝑐2 to 
𝑐1 after a random time with exponential distribution with parameter 𝜆2. The time 
intervals separated by velocity changes are independent random variables. Thus the 
particle moves forward with velocity 𝑐1 and backward with velocity −𝑐2 and the changes 
are governed by a non homogeneous Poisson process. For the probabilistic description 

of the random position 𝑋 = 𝑋 𝑡 =  𝑉 𝑠 𝑑𝑠
𝑡

0
 we need the following distributions 

                                                
𝑓1 𝑥, 𝑡 𝑑𝑥 = 𝑃𝑟 𝑋 𝑡 ∈ 𝑑𝑥, 𝑉 𝑡 = 𝑐1  

𝑓2 𝑥, 𝑡 𝑑𝑥 = 𝑃𝑟 𝑋 𝑡 ∈ 𝑑𝑥, 𝑉 𝑡 = −𝑐2 
                                         (1) 

It is well known that the functions (1) are solutions of the following differential system 
(See [9]) 

                                                     

𝜕𝑓1

𝜕𝑡
= −𝑐1

𝜕𝑓1

𝜕𝑥
+ 𝜆2𝑓2 − 𝜆1𝑓1

𝜕𝑓2

𝜕𝑡
= 𝑐2

𝜕𝑓2

𝜕𝑥
+ 𝜆1𝑓1 − 𝜆2𝑓2

                                                           (2) 

The system (2) by means of the transformation 
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                                                         𝑝 = 𝑓1 + 𝑓2, 𝑤 = 𝑓1 − 𝑓2  
can equivalently be written down as 

                                         

𝜕𝑝

𝜕𝑡
= −

𝑐1−𝑐2

2

𝜕𝑝

𝜕𝑥
−
𝑐1+𝑐2

2

𝜕𝑤

𝜕𝑥
𝜕𝑤

𝜕𝑡
= −

𝑐1+𝑐2

2

𝜕𝑝

𝜕𝑥
−
𝑐1−𝑐2

2

𝜕𝑤

𝜕𝑥
−  𝜆1 −  𝜆2 𝑝 −  𝜆1 +  𝜆2 𝑤

                    (3) 

The distribution 𝑝(𝑥, 𝑡)𝑑𝑥 = 𝑃𝑟 𝑋 𝑡 ∈ 𝑑𝑥  consists of a singular component 

concentrated in 𝑥 = 𝑐1𝑡 with probability 
1

2
𝑒−𝜆1𝑡  and in 𝑥 = −𝑐2𝑡 with probability 

1

2
𝑒−𝜆2𝑡  

and an absolutely continuous part spread over the interval (−𝑐2𝑡, 𝑐1𝑡) . The absolutely 
continuous part of the distribution is a solution of the second order hyperbolic equation 
(extracted from the differential system (3) by means of subsequent differentiations and 
substitutions): 

                                   
𝜕2𝑝

𝜕𝑡2
= 𝑐1𝑐2

𝜕2𝑝

𝜕𝑥2
+  𝑐2 − 𝑐1 

𝜕2𝑝

𝜕𝑥𝜕𝑡
−  𝜆1 + 𝜆2 

𝜕𝑝

𝜕𝑡
  

                                             +
1

2
  𝑐2 − 𝑐1  𝜆1 +  𝜆2 −  𝜆2 −  𝜆1  𝑐1 + 𝑐2  

𝜕𝑝

𝜕𝑥
                           (4) 

The presence of  
𝜕𝑝

𝜕𝑥
  and 

𝜕2𝑝

𝜕𝑥𝜕𝑡
 in (4) is clearly related to the drift of motion. Equation (4), 

when 𝑐1 = 𝑐2 = 𝑐 and 𝜆1 = 𝜆2 = 𝜆, reduces to the classical telegraph equation 

                                                          
𝜕2𝑝

𝜕𝑡2 = 𝑐2 𝜕2𝑝

𝜕𝑥2 − 2𝜆
𝜕𝑝

𝜕𝑡
  

3. Formation of Model by using Initial Value Problem: 
The classical approach based on Fourier transforms permits us to obtain 

the characteristic function  

                                                       𝐹 𝛽, 𝑡 =  𝑒𝑖𝛽𝑥 𝑑𝑃(𝑥, 𝑡)
+∞

−∞
   

of the distribution 
                                                           𝑃(𝑥, 𝑡) = 𝑃{𝑋(𝑡) ≤ 𝑥}                                                               (5) 
The characteristic function of the distribution (5) is 

                       𝐹 𝛽, 𝑡 =
1

2
𝑒−

1

2
 −𝑖𝛽 𝑐2−𝑐1 + 𝜆1+ 𝜆2  𝑡  1 + 𝐸1 𝐸2 +  1 − 𝐸1 𝐸3                           (6) 

where 𝐸1 =
𝜆1+ 𝜆2

  𝜆1+ 𝜆2 2−𝛽2 𝑐1+𝑐2 2+2𝑖𝛽 𝑐1+𝑐2  𝜆2− 𝜆1 
  

           𝐸2 = 𝑒
𝑡

2  𝜆1 +  𝜆2 2 − 𝛽2 𝑐1 + 𝑐2 2 + 2𝑖𝛽 𝑐2 + 𝑐1  𝜆2 −  𝜆1   

           𝐸3 = 𝑒−
𝑡

2  𝜆1 +  𝜆2 2 − 𝛽2 𝑐1 + 𝑐2 2 + 2𝑖𝛽 𝑐2 + 𝑐1  𝜆2 −  𝜆1    
for 𝛽 ∈ 𝑅 and 𝑡 ≥ 0. 

We first note that the Fourier transform of equation (4) is 

                                              
𝑑2𝐹

𝑑𝑡 2 +  𝑖𝛽 𝑐2 − 𝑐1  𝜆2 + 𝜆1  
𝑑𝐹

𝑑𝑡
+  

                            
𝑖𝛽

2
  𝑐2 − 𝑐1  𝜆2 +  𝜆1 −  𝜆2 −  𝜆1  𝑐2 + 𝑐1 + 𝛽2𝑐1𝑐2  = 0                      (7) 

It is straightforward that the general solution of (7) reads 

                                       𝐹 𝛽, 𝑡 = 𝑒−
𝑡

2
 −𝑖𝛽 𝑐2−𝑐1 + 𝜆1+ 𝜆2   𝐻𝐸2 + 𝐾𝐸3   

The constants 𝐻 and 𝐾 are evaluated using the fact that 𝐹 must satisfies the following 
initial conditions: 
                                                                 𝐹 𝛽, 0 = 1  

                                                     
𝑑𝐹

𝑑𝑡
 𝛽, 𝑡 =

1

2
𝑖𝛽 𝑐2 − 𝑐1  if 𝑡 = 0                                                   (8) 

While the first condition immediately follows from the fact that 𝑝(𝑥, 0) = 𝛿(𝑥), the 
second one involves much more analysis. The features of motion described in above 
Section authorize us to write 

                              𝐸𝑒𝑖𝛽𝑋  ∆𝑡 =
1

2
𝑒−𝑖𝑐2∆𝑡 1 − 𝜆2∆𝑡 +

1

2
𝑒−𝑖𝑐1∆𝑡 1 − 𝜆1∆𝑡   
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                                                  +
 𝜆1+𝜆2 ∆𝑡

 𝑐1+𝑐2 ∆𝑡

1

2
 𝑒𝑖𝛽𝑦 𝑑𝑦 + 𝑜(∆𝑡)
𝑐1∆𝑡

−𝑐2∆𝑡
                                                  (9) 

since, in a small time elapse [0, ∆𝑡), either no velocity change occurs or one Poisson 
event happens. From (9) and some calculations, we get 

                                       𝐸𝑒𝑖𝛽𝑋  ∆𝑡 = 1 +
𝑖𝛽

2
 𝑐2 − 𝑐1 ∆𝑡 + 𝑜(∆𝑡)  

and thus 
𝑑𝐹

𝑑𝑡
|𝑡=0 = lim∆𝑡→0

𝐸𝑒 𝑖𝛽𝑋  ∆𝑡 −1

∆𝑡
=

𝑖𝛽

2
 𝑐2 − 𝑐1   

as claimed in (8). 
A little algebra permits us to calculate 𝐻 and 𝐾 and thus obtain (6). For 

the inversion of the characteristic function, we need three integrals which can be 
inferred from the relationship 

                            𝑒𝑖𝛾𝑥 𝐼0  
𝜆

𝑐
 𝑐2𝑡2 − 𝑥2 𝑑𝑥 = 𝑐

 𝑒
𝑡
2
 𝜆2−𝑐2𝛾2

−𝑒
−
𝑡
2
 𝜆2−𝑐2𝛾2

 

 𝜆2−𝑐2𝛾2

𝑐𝑡

−𝑐𝑡
     

obtained in [17]. 
For the sake of simplicity, we write 

                           𝐴 =   𝜆1 +  𝜆2 2 − 𝛽2 𝑐1 + 𝑐2 2 + 2𝑖𝛽 𝑐2 + 𝑐1  𝜆2 −  𝜆1   
The formulas we must apply are 

                                        = (𝑐1 + 𝑐2)𝑒
𝑖𝛽 𝑐2−𝑐1 

𝑡

2
− 
 𝜆2− 𝜆1  𝑐2+𝑐1 

2 𝑐2+𝑐1 
𝑡
 
𝑒
𝑡
2
𝐴

−𝑒
−
𝑡
2
𝐴

𝐴
  

                                              𝑒𝑖𝛽𝑥
𝑐1𝑡

−𝑐2𝑡

 𝜆2−𝜆1 

 𝑐2+𝑐1 
𝑥
𝜕𝐼0

𝜕𝑡
 

2 𝜆1𝜆2

𝑐1+𝑐2
  𝑥 + 𝑐2𝑡  𝑐1𝑡 − 𝑥  𝑑𝑥               (10) 

The third formula we need is 

                                         = 𝑒𝑖𝛽 𝑐1𝑡𝑒
𝜆2− 𝜆1
𝑐2+𝑐1

𝑐1𝑡 − 𝑒−𝑖𝛽 𝑐2𝑡𝑒
− 
𝜆2− 𝜆1
𝑐2+𝑐1

𝑐2𝑡                                                   (11) 
Formulas (10) and (11) are closely connected. 
With this at hand, the characteristic function (6) can be written as: 

      𝐹 𝛽, 𝑡 =
𝑒

− 
 𝜆1+ 𝜆2 𝑡

2

2
 𝑒− 

𝑖𝛽  𝑐2−𝑐1 

2  𝑒
𝑡

2
𝐴 − 𝑒−

𝑡

2
𝐴 +  𝜆1 + 𝜆2 𝑒

− 
𝑖𝛽  𝑐2−𝑐1 

2  
𝑒
𝑡
2
𝐴

−𝑒
−
𝑡
2
𝐴

𝐴
      (12) 

Using (11) for the first term and (10) for the second one, immediately obtain the 
distribution. In view of this distribution, we have to integrate the absolutely continuous 
part and use formulas (10), (11) and (12) when 𝛽 = 0. We get 

                                      𝑃𝑟 −𝑐2𝑡 < 𝑋 𝑡 < 𝑐1𝑡 =
𝑒

− 
 𝜆1+ 𝜆2 𝑡

2

2
  

                                                  𝑐2 + 𝑐1 𝑒
𝑡

2
 𝜆1+ 𝜆2 −

𝑐2+𝑐1

2
𝑒  

 𝜆2− 𝜆1 𝑡

2 −
𝑐2+𝑐1

2
𝑒− 

 𝜆2− 𝜆1 𝑡

2     

                                           = 1 −
1

2
𝑒−𝜆1𝑡 −

1

2
𝑒−𝜆2𝑡                                                                            (13) 

4. Example:  
To examine the gender gap in CHD mortality across age groups and to compare 

the age dependency of the gender gap between blacks and whites, we conducted a 
prospective cohort study combining data from 9 United States epidemiological studies 
(Atherosclerosis Risk in Communities Study, Charleston Heart Study, Evans County 
Study, Framingham Heart Study [original and offspring cohorts], National Health 
Examination Follow-up Study, Rancho Bernardo Study, San Antonio Heart Study, and 
Tecumseh Community Health Study). Baseline examinations were performed between 
1958 and 1990 (depending on the study), and mean follow up was 13.7 years in general 
communities in several United States geographic areas. We included 39,614 subjects 
>30 years and free of cardiovascular disease (CVD) at baseline (18% blacks, 37% men). 
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Completion of follow-up was >97% for all studies. As the main outcome measures, age 
specific CHD mortality rates and male/female CHD mortality hazard ratios were 
calculated using Cox hazards regression [11, 12 & 13]. 
Figure (1): Age Specific CHD mortality rates in men compared with women. The 
horizontal lines illustrate the lag times of CHD mortality rates between men and 
Women. 

 
(A) Whites. The lag time is 10–15 years at younger ages and decreases with age 

 
(B) Blacks. The lag time is 5–10 years 

Figure (2): Age Specific CHD mortality rates in men compared with women. The 
horizontal lines illustrate the lag times of CHD mortality rates between men and women 
using Uniform Distribution. 

 

(A) Whites. The lag time is 10–15 years at younger ages and decreases with age 
Red Line: White Men 

Blue Line: White Women 
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(B) Blacks. The lag time is 5–10 years 
Red Line: Black Men 

Blue Line: Black Women 
5. Conclusion: 

The gender difference in coronary heart disease mortality was more pronounced 
in whites than in blacks at younger ages. This discrepancy was not explained by 
adjustment for coronary heart disease risk factors and suggests that other factors may 
be responsible for the ethnic variation in the gender gap. By using uniform distribution 
the mathematical model gives the result as same as the medical report. The medical 
reports {Figure (1)} are beautifully fitted with the mathematical model {Figure (2)}; 
(𝑖. 𝑒) the results coincide with the mathematical and medical report.    
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