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Abstract: 
         In this paper, we build up a model to study the effects of predation on the 
population dynamics of the predator dynamics of the predators and its prey. More 
precisely, among the various predator-prey models, we focus on the Lotka Volterra model, 
which models two species system. This model can be used to simulate prey predator 
dynamics, and analyze when prey-predator populations are sustainable and when they are 
doomed, which can serve purposes like preventing species extinction. We illustrate 
example of prey-predator model and we obtain the solution. 
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The Lotka Volterra Model:  
           The lotka volterra equations ,also known as the predator –prey equations ,are a 
pair of first-order, non –linear, differential equations frequency used to describe the 
dynamics of biological systems in which two species interact ,one as a predator and the 
other as prey. 
The populations change through time according to the pair of equations: 

   BxyAx
dt

dx
  

   DxyCY
dt

dy
  

 x is the number of prey(for example : Deer) 
 y is the number of some predators (for example, Tiger) 

 
dt

dy
 and 

dt

dx
 represent the growth rates of the two populations over time, 

 t represent time, and 
 A,B,C,D are positive real parameters describing the interaction of the two 

species: 
 A  - Growth rate of prey 
 B - Searching efficiency or attack rate 
 C - Predator mortality rate 
 D - Growth rate of predator or predator’s ability at turning food into 
offspring 
 Physical Meanings of the Equations:  
 The Lotka-Volterra model makes a number of assumptions about the 
environment and evolution of the predator and prey populations: 

1. The prey population finds ample food at all times. 
2. The food supply of the predator population depends entirely on the size of the 

prey population 
3. The rate of change of population is proportional to its size. 
4. During the process, the environment does not change in favor of one species and 

genetic adaptation is inconsequential. 

5. Predators have limitless appetite.   
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The Lotka Volterra Equations: 
 Now that we have investigated a slightly more straightforward situation, we will 
work directly with the Lotka volterra equations. As we started earlier, there is  no 
guarantee that a conserved quantity exists for a system, but assuming one does  exist 
,we will begin by finding  the conserved quantity for the system, 

     
dt

dx
= Ax – Bxy 

     
dt

dy
= -Cy + Dxy 

to start, multiply both sides of each equation by 1/xy to get 
    
on the top yields 

     0 =
dt

dx

xy

1
 = B

Y

A
  

     
xydt

dy 1
=  −

x

C
 + D  

Multiplying both sides of each equation by the appropriate derivative, we get 

     



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A

dt
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dt
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dt
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     



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Subtracting the bottom equation from the top yields 

     
dt

dy
0 











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x

C

dt
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Like before, 
dt

dE
= 0,so the right hand side must match our chain-rule expansion for 

dE/dt, 

         yxE
xdt

dx
yxE

ydt

dy
yxE

dt

d
,,,








  

These two equations tell us that if, 

       B
y

A
yxE

y





,  

       D
x

C
yxE

x





,  

then, like before, E (x(t),y(t)) is a constant as t varies . Thus we can write that  

    E   xD
x

C
yB

y

A
yx 

















  ,  

Integrating we get, 
    E(x,y) = Alny – By + f(x) = Clnx – Dx + g(y) 
 Again we see arbitrary functions of integration, which are eliminated when we 
take a partial derivative just like how ordinary integration introduces arbitrary 
constants, which ordinary derivatives wipe out. Merging the sides of the above equation 
as before, we get that 
    E(x,y) = Alny + Clny – By – Dx + M 
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with a little algebraic manipulation ,like before ,we see that 
    L – M = Alny + Clnx – By – Dx 
and so  
    E(x,y) = Alny + Clnx – By – Dx = K 
where  K = L – M is a constant that depends on initial conditions and not on t. 
 Like we stated with the simpler system, this is not the only possible way to 
defined a conserved quantity for the Lotka – Volterra equations. For example, it is often 
the case that   𝑒𝐸(𝑥,𝑦)(with E(x,y) being the above version) is the chosen definition for 
the Lotka – Volterra equations conserved quantity ,which is perfectly valid since it will 
still always be constant as t varies. 
 However, since the way we have defined E(x,y) is also perfectly valid, and since it 
is a common version, we will stick to it for the remainder of our analysis.  
  Instead of straightforward polynomial functions ,we see natural logarithms, 
although there are linear terms as before .The reason for this difference stems from the 
differences in the initial equations : the simpler system had “-y” and “-x” where the 
Lotka – Volterra equation have “ A/y” and “ C/x”(compare the respective integrals in the 
derivations) . One thing to take from the conserved quantity for the Lotka Volterra 
equations is that, because of the natural logarithms, it is not defined anywhere where x 
≤ 0 or y ≤ 0; hence, for any value of K,x and y will never go below 0 if the system starts 
out with E(x,y) = K (this matches our intuitive notion that there cannot be negative 
numbers of either predator or prey)  
Example:  

dt

dx
 =x(1-0.5y)=x-0.5xy =F (x,y) 

And                         (1) 

    
dt

dy
 =y (-0.75 + 0.25x) = -0.75y + 0.25xy = G(x,y) 

For x and y positive 
Solution: 
The critical points of this system are the solutions of the algebraic equations 
     x(1-0.5y)=0                                                                (2) 
     y(-0.75  +0.25x)= 0                                                   (3) 
namely, the points (0,0) and (3,2) fig (1) shows the critical points and a direction field 
for the system (1)  

 
Figure (1): Critical points and direction field for the predator – prey system (1) 
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From this figure it appears that trajectories in the first quadrant encircle the critical 
point (2). Whether the trajectories are actually closed curves, or whether they slowly 
spiral in or out, cannot be definitely determined from the direction field. The origin 
appears to be a saddle point. The co ordinate axes are trajectories of Eqs (1). 
Consequently; no other trajectory can cross a co ordinate axis, which means that every 
solution starting in the first quadrant remains there for all time. 
 Next we examine the local behavior of solutions near each critical point. Near the 
origin we can neglect the nonlinear terms in Eqs (1) to obtain the corresponding linear 
system 

    
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The Eigen values and Eigen vectors of Eq (4) are  
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So its general solution is 
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Thus the origin is a saddle point both of the linear system (4) and of the 
nonlinear system (1) and therefore is unstable. One pair of trajectories enters the origin 
along the y axis all other trajectories depart from the neighborhood of the origin. 
To examine the critical point (2) we can use the Jacobian Matrix 

                          J = 
𝐹𝑥(𝑥, 𝑦) 𝐹𝑦(𝑥, 𝑦)

𝐺𝑥(𝑥, 𝑦) 𝐺𝑦(𝑥, 𝑦)
 =  

1 − 0.5𝑦 −0.5𝑥
0.25𝑦 −0.75 + 0.25𝑥

                (7) 

Evaluating J at the (2), we obtain the linear system 
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        (8)
 

Where u = x-3 and v=y-2.The Eigen values and eigenvectors of this system are 
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 Since the Eigen values are imaginary, the critical point (2) is a center of the linear 
system (8) and is therefore a stable critical point for that system. This is one of the cases 
in which the behaviour of the linear system may or may not carry over to the nonlinear 
system, so the nature of the point (2) for the non-linear system (1) cannot be 
determined from this information. 
 The simplest way to find the trajectories of the linear system (8) is to divide the 
second of Eqs (8) by the first so as to obtain the differential equations. 

    
du

dv
    vuvu

dt

du

dt

dv
3/5.1/5.0/ 
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     Udu+3vdv = 0                 (10) 

Consequently,    kvu
222

3 
                                                                 (11)

 
Where k is an arbitrary non negative constant of integration. Thus the 
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trajectories of the linear system (8) are ellipse centered at the critical point and 
elongated somewhat in the horizontal direction. 
 Now let us return to the nonlinear system (1). Dividing the second of Eqs (1) by 
the first we obtain 

     
yx

xy

dx

dy

5.01(

)25.075.0(






               (12)
 

Equation (12) is a separable equation and can be put in the form 

     dx
x

x
dy

y

y 25.075.05.01 



  

From which if follows that 
     0.75 lnx +lny – 0.5y – 0.25x = C              (13) 
Where C is a constant of integration. Although by using only elementary functions we 
cannot solve Equ (13) explicitly for either variable in terms of the other, it is possible to 
show that the graph of the equation for a fixed value of c is a closed curve surrounding 
the critical point (2).Thus the critical point is also a center of the nonlinear system (1) 
and the predator and prey populations exhibit a cyclic variation. 

 
Figure (2): A phase portrait of the system (1) 

 Fig (2) shows a phase portrait of the system of equations. For some initial 
conditions the trajectory represents small variations in x and y about the critical point, 
and is almost elliptical in shape, as the linear analysis suggests. For other initial 
conditions the oscillations in x and y are more pronounced, and the shape of the 
trajectory is significantly different from an ellipse. 
 We observed that the trajectories are traversed in the counter clockwise 
direction. The dependence of x and y on for a typical set of initial conditions is shown in 
Fig (3)  

 
Figure (3): Variations of the prey and predator populations with time for the system 

(1) 
 We can note that x and y are periodic functions of t, as they must be since the 
trajectories are closed covers. Further the oscillation of the predator population lags 
behind that of the prey. Starting from a state in which both predation and prey 
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populations are relatively small, the prey first increase because there is little predation. 
Then the predators with abundant food increase in population also. This causes heavier 
predation and the prey tends to decrease. Finally, with a diminished food supply, the 
predator population also decreases and the system returns to the original state. 
Conclusion:  
 By starting with this model, one could simply account for one more variable, for 
instance hunting, and have an entirely new model. This would also help to increase the 
relevance of the science, because the more predation relationships this level of study 
can apply to, the more relevant the science becomes. Accounting for more variables can 
increase the adaptability of the model to increasingly more species. Other options for 
future work could include studying other predation relationships for which the Lotka 
Volterra Model may apply, particularly species which rely on one another as recourses 
while lacking substantial external variables. This model has simply broken the ground 
of endless possibility in the biological mathematics world.    
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