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Abstract: 
Identification of error in nonrigid registration is a critical problem in the medical 

image processing community. “Assessing Quality Using Image Registration Circuits” 
(AQUIRC) method is implemented to identify nonrigid registration errors in clinical MRI 
kidney images. In this paper, we extend our previous work to assess AQUIRC’s ability to 
detect local nonrigid registration errors and validate it quantitatively at specific clinical 
landmarks. Non rigid errors can be identified through segmentation of clinical MRI kidney 
images. Pathology identification can be easily done in the proposed system.  
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1. Introduction: 

 Although analytical solutions have been derived to estimate error for the point-
based rigid-body registration problem [1], no such solution exists for the nonrigid case 
or even for the rigid case when the transformations are not estimated with homologous 
points. Assessing the quality of a particular nonrigid registration between image 
volumes thus remains a difficult and outstanding problem facing the medical imaging 
community. Few solutions have been proposed that do not require pre-labeled atlases. 
These solutions generally fall into two broad categories: Bayesian methods and 
supervised learning techniques. 

 Bayesian methods have been proposed for instance to estimate registration 
uncertainty, and have been used to regularize the deformation field in [2], provide 
confidence information on volumetric measurements in [3], to estimate uncertainty in 
intra-subject registration in [4] or to estimate lung elasticity in [5]. These techniques 
require the estimation of posterior distributions, which is done either with Markov 
Chain Monte Carlo methods [3]–[5], a computationally demanding approach, or mean-
field variational Bayesian techniques. In [6] a bootstrap resampling technique is 
proposed to estimate the variability of an estimated transformation. Evaluation of this 
technique was limited to 2-D images and simple transformations. Other methods have 
been proposed that use supervised learning techniques [7]–[9] on image features or 
manually labeled points to identify registration uncertainty. These techniques, which 
require a training set for each new application and data set, have been used, for 
instance, to assess registration accuracy in longitudinal computed tomography (CT) 
images of the lungs [7], [8] or to detect miss registered regions in simulated brain tumor 
images [9]. 

 Because assessing the quality of an individual registration is difficult, a number 
of techniques have been developed over the years to make the transformation 
estimation process robust and to produce transformations that are likely to be accurate. 
These include enforcing desirable transformation properties such as inverse 
consistency and transitivity consistency [10]–[12]. A number of algorithms that enforce 
inverse consistency have been proposed. A representative set of such algorithms can be 
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found in [13]–[22]. The consistency of three transformations was used by Holden et al. 
[12], Free borough [24], Woods et al. [11], and Christensen [10] to compare and 
evaluate several similarity measures and registration algorithms. This technique 
involves three images A, B, and C and three transformations, i.e., the transformation 
from A to B, from B to C, and from C to A, respectively. Composing the three 
transformations maps the coordinate system of image A onto itself through a circuit. If 
all three transformations are error free, any voxel in image A is mapped exactly onto 
itself. Errors along the circuit may be detected by computing the distance between a 
point x and its projection, where. In past work, registration circuits have also been 
referred to as triplets and loops. Here, we use the term circuit that is used in graph 
theory.  

 The inevitability and transitivity properties of transformations were also used by 
Christensen and Johnson [25] to evaluate nonrigid registration algorithms. In more 
recent work [16], the same group proposed a registration algorithm called TICMR for 
transitive inverse consistent manifold registration (TICMR) that jointly estimates a 
correspondence between three manifolds while minimizing inverse and transitivity 
consistency. While, undoubtedly, transitivity consistency is a necessary condition for 
error-free registration around a registration circuit, it is not sufficient. As discussed by 
Christensen [25], the identity transformation is a trivial example of a useless 
transformation that would minimize both inverse consistency and transitivity error. 
Also, transitivity error is an aggregate measure of error across the circuit. It does not 
identify on which edge in the registration circuit error occurs, and errors may be 
masked because an error on one edge can be compensated by an error on another edge 
in the registration circuit. As a consequence, transitivity error has traditionally been 
used to compare and evaluate algorithms with the assumption that lower transitivity 
error combined with other checks that would rule out unrealistic or useless 
transformations is synonymous with a better registration algorithm. 
       In this work, we calculate transitivity error over multiple registration circuits 
that have images in common. Thus an individual registration is used in multiple 
registration circuits; using this redundancy allows for the estimation of error for an 
individual registration. To the best of our knowledge, transitivity error has not been 
used to assess the quality of a particular registration between two image volumes until 
recently [26]–[29]. In this published work, we built on the idea of transitivity error and 
have shown that it could indeed be used to evaluate the quality of an individual image 
registration. This algorithm, that we call AQUIRC for assessing quality using image 
registration circuits, was first proposed in [26] where it was used for global atlas 
selection. 

In [27] we have shown that it could be used to detect errors in intensity-based 
rigid body registration problems. In [28] we presented preliminary and qualitative 
results on simulated data suggesting that this approach could be used to detect local 
registration error. In [29], we used the estimation of error at the local error for local 
atlas selection. Herein, we extend upon the work in [28]. We apply AQUIRC to a data set 
of 109 medical images with manually identified ground truth, treating nine images as 
atlas images and the remaining 100 as target images. We use five popular registration 
algorithms to provide a wide range of error that is representative of what might be 
expected when using a registration algorithm in practice. Using these data and 
algorithms, we show that AQUIRC’s quality measure correlates well with the ground 
truth at the anterior commissure (AC) and the posterior commissure (PC) points. The 
AC and PC are two reference points used clinically for brain normalization to, for 
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instance, guide the placement of deep brain stimulation (DBS) electrodes. We use the AC 
and PC points, which can be localized accurately in MR images, as this allows us to 
correlate our results with a known target registration error locally. Also, we [26], [29] 
as well as others [30] have used other error measures such a DICE to evaluate our 
approach. In [26], we applied AQUIRC to global atlas selection and showed that it can be 
used to improve the DICE value over majority vote as well as over a residual global NMI 
atlas selection method. We also found in [29] that AQUIRC can be used to improve upon 
the DICE value over majority vote in the context of local atlas selection for the 
brainstem and performs comparably to cutting edge atlas selection techniques on other 
brain structures. 

 
Figure 1: An example of one registration circuit, with the transformations between each 
image represented by TAB, TBC, and TCA. Distance between the red X and X ` represents 
the registration circuit consistency error. 
2. Ease of Use: 
 Data Preparation: 

Image registration involves more than two images that maybe acquired using 
different modalities or at different parameters, so in order to achieve consistent input 
data for the registration process, appropriate data preparation is sometimes needed 
prior to the registration process. These may include data format conversion; coordinate 
transformation, intensity correction, distortion correction and so on. Sometimes it may 
also be necessary to preprocess the data, for example image segmentation, to provide 
the registration algorithms with appropriate input information.  
     Many current registration algorithms are not robust in the presence of large 
intensity variations across the images, so that it may be necessary to apply intensity 
correction schemes prior to registration. These are typically based on low pass filtering 
the data to suppress image structure and obtain an estimate of the underlying spatial 
intensity variations, which can then be used to normalize the intensity of the original 
images. The result is a much more homogeneous appearance, which is likely to avoid 
failures of registration algorithms. Blurring is also applied to correct for differences in 
the intrinsic resolution of the images.  Some methods resample the images is otropically 
to achieve similar voxel sizes in all image dimensions; others resample to obtain similar 
voxel sizes in the images to be registered. 
 Image Registration Algorithms: 

Registration algorithms compute image transformations that establish 
correspondence between points or regions within images, or between physical space 
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and images. This section briefly introduces some of these methods. As stated above, 
based on the registration basis, there are image-based registration and non-imaged 
based registration. Image-based registration can be further divided into extrinsic and 
intrinsic, it can also be broadly divided into algorithms that use corresponding points, 
corresponding surfaces or operate directly on the image intensities. 
 Edge Based Registration: 

Intrinsic registration can also be based segmentation where anatomically the 
same structures (mostly surfaces) are extracted from both images to be registered, and 
used as sole input for the alignment procedure. In these algorithms corresponding 
surfaces are delineated in the two imaging modalities and a transformation computed 
that minimizes some measure of distance between the two surfaces. At registration this 
measure should be minimum. The first widely used method was the “head and hat” 
algorithmi, but most methods are now based on the iterative closest point algorithm. 
 Non-Rigid Registration Algorithms: 

The main difference between rigid and non-rigid registration techniques is the 
nature of the transformation. The goal of rigid registration is to find the six degrees of 
freedom (3 rotations and 3 translations) of a transformation which maps any point in 
the source image into the corresponding point in the target image. An extension of this 
model is the affine transformation model which has twelve degrees of freedom and 
allows for scaling and shearing. These affine or linear transformation models are often 
used for the registration of images for which some of the image acquisition parameters 
are unknown, such as voxel sizes or gantry tilt or to accommodate a limited amount of 
shape variability. By adding additional degrees of freedom (DOF), such a linear 
transformation model can be extended to nonlinear transformation models. 
 Validation: 

Validation is an essential part of the registration process. Several measures of 
error including target registration error (TRE) which is the disparity in the positions of 
two corresponding points after registration can be used to evaluate the registration. 
TRE may vary with the registration situation such as the imaging modalities, the 
anatomy and the pathology. So experimental validation of a registration system should 
be limited to a clinical situation matches the experimental one. The degree of the 
required match will vary with the registration system, but the same modality pair 
should always be used.  
      While visual assessment has also often been used as a standard, the most 
commonly accepted strategy for validation is to compare the system to be validated 
against a gold standard, which is defined to be any system whose accuracy is known to 
be high. Gold standards may be based on computer simulations, typically by acquiring 
one image and generating a second with a known geometrical transformation, on 
phantom images, or on pairs of patient images. The former category provides arbitrarily 
accurate geometrical transformations but, like phantoms, suffers in comparison to the 
latter category in realism. Simulations should also be approached with great care in 
nonrigid validations because of the bias of such validations in favor of registration 
methods that employ similar nonrigid transformations, whether or not they are 
physically meaningful. Validations based on pairs of acquired patient images represent 
the most desirable class of standards because of the inclusion of all the physical effects 
of the patient on image acquisition, but it suffers from the difficulty of establishing the 
true transformation between acquired images. The simplest method for establishing the 
transformation between acquired images is based on the target feature, which is any 
object that can be localized independently in each view. The root-mean-square (RMS) 
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disparity in the two localizations of the target feature after registration provides an 
upper bound on the RMS of TRE at the location of the feature. A more desirable method 
for rigid-body registration is based on a registration system that employs several 
fiducial features as registration cues. The major advantage of this type of system as a 
validation standard is that its accuracy can be determined without reference to other 
standards. This feat is accomplished by exploiting theoretically established statistical 
relationships among fiducial localization error FLE, fiducial registration error FRE, and 
TRE to translate self-consistency into accuracy. FRE plays an important role in this 
translation, but is itself a poor measure of registration error. 
3. Architecture: 

 
Figure 2: Architecture of kidney image validation Process 

4. Conclusion and Future Work: 
In the proposed work error detection in biomedical kidney images can be 

validated by AQUIRC method. Query kidney image is compared with Dataset images to 
validate the kidney image and to detect errors in it. Non Rigid registration technique is 
used to validate the kidney images. Image segmentation plays a crucial role in many 
medical imaging applications by automating or facilitating the delineation of anatomical 
structures and other regions of interest. Computed tomography (CT) is images with low 
contrast and with heavy noise. To handle these types of images for the purpose of 
kidney tumor delineation, we propose a new technique called AQUIRC is used. Non rigid 
registration errors are identified by this method. By combining and refining state-of-
the-art techniques we demonstrate the possibility of building an algorithm that meets 
these requirements.  
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