
International Journal of Engineering Research and Modern Education (IJERME)

ISSN (Online): 2455 - 4200

(www.rdmodernresearch.com) Volume I, Issue I, 2016

396

AVOIDING THE DE-DUPLICATION USING
CONTENT SIMILARITY AND JOB SCHEDULING

ALLOCATION BASED ON WORKLOADS
N. Ramki* & A. Anitha**

* PG Scholar, Department of Master of Computer Applications, Dhanalakshmi Srinivasan
Engineering College, Perambalur, Tamilnadu

** Assistant Professor, Department of Master of Computer Applications, Dhanalakshmi
Srinivasan Engineering College, Perambalur, Tamilnadu

Abstract:
Experimentally, magnetic tape item has been used for database backup. With the

explosion in disk capacity, it is now impossible to use disk for data backup. The Cloud
storage is used for the database backup. The chunk lookup in cloud bottleneck problem
that inline, chunk-based De-duplication schemes face. We perform stream De-duplication
by breaking up an incoming stream into relatively large segments and De-duplicating
each segment against only a few of the most similar previous segments. To identify similar
segments, we use content similarity and a sparse index. We choose a small portion of the
chunks in the stream as samples. Our sparse index maps these samples to the existing
segments in which they occur. To reduce the task of evaluating text similarity to
assessment of content similarity and use features such as bag of words to find De-
duplication content. The proposed method can be allocating the resource can be based on
the dependencies and the particular job execution and its weight of the each job and
content similarity avoid the De-duplications.
1. Introduction:

In modern server farms, virtualization is being used to provide ever-increasing
number of servers on virtual machines (VMs), reducing the number of physical
machines Permission to make digital or hard copies of all or part of this work for
personal or class room use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page.

To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission. This approach better utilizes server resources,
allowing many different operating system instances to run on a small number of
servers, saving both hardware acquisition costs and operational costs such as energy,
management, and cooling. Individual VM instances can be separately managed allowing
them to serve a wide variety of purposes and preserving the level of control that many
users want.

However, this flexibility comes at a price: the storage required to hold hundreds
or thousands of multi-gigabyte VM disk images, and the inability to share identical data
pages between VM instances. One approach saving disk space when running multiple
instances of operating systems on multiple servers, whether physical or virtual, is to
share files between them; i. e., sharing a single instance of the /usr/local file via network
mount. This approach is incompatible with VM disk images; however, since the internal
file structure of a VM disk image is invisible to the underlying file system.

Standard compression such as that provided by the Lempel-Ziv compression is
ineffective because, while it can reduce the storage space used by a single disk image, it
cannot eliminate commonalities between files. Instead, others have proposed the use of
De-duplication to reduce the storage space required by the many different VM disk
images that must be stored in a medium to large scale VM hosting facility. While it

International Journal of Engineering Research and Modern Education (IJERME)

ISSN (Online): 2455 - 4200

(www.rdmodernresearch.com) Volume I, Issue I, 2016

397

seems clear that de duplication is a good approach to this problem, our research
quantifies the benefits of using De-duplication to reduce the storage space needed for
multiple VM disk images.

The experiments also investigate which factors impact the level of de-duplication
available in different sets of VM disk images some of which are under system control (e.
g., fixed versus variable-sized chunking and average chunk size) and some of which are
dependent on the usage environment (e. g., operating system version and VM target
use). By quantifying the effects of these factors, the results provide guidelines for both
system implementers and sites that host large numbers of virtual machines, showing
which factors are important to consider and the costs of making design choices at both
the system and usage level.

Figure 1: Flow Chart

2. Related Works:
The Effectiveness of Deduplication on Virtual Machine Disk Images:

Virtualization is becoming widely deployed in servers to efficiently provide many
logically separate execution environments while reducing the need for physical servers.
While this approach saves physical CPU resources, it still consumes large amounts of
storage because each virtual machine (VM) instance requires its own multi-gigabyte
disk image. Moreover, existing systems do not support ad hoc block sharing between
disk images, instead relying on techniques such as overlays to build multiple VMs from a
single “base” image. Instead, we propose the use of De-duplication to both reduce the
total storage required for VM disk images and increase the ability of VMs to share disk
blocks.

To test the effectiveness of De-duplication, we conducted extensive evaluations
on different sets of virtual machine disk images with different chunking strategies. Our
experiments found that the amount of stored data grows very slowly after the first few
virtual disk images if only the locale or software con- figuration is changed, with the rate
of compression suffering when different versions of an operating system or different
operating systems are included. We also show that fixed length chunks work well,
achieving nearly the same compression rate as variable-length chunks. Finally, we show

International Journal of Engineering Research and Modern Education (IJERME)

ISSN (Online): 2455 - 4200

(www.rdmodernresearch.com) Volume I, Issue I, 2016

398

that simply identifying zero-filled blocks, even in ready-to use virtual machine disk
images available online can provide significant savings in storage.
An Empirical Analysis of Similarity in Virtual Machine Images:

To efficiently design De-duplication, caching and other management mechanisms
for virtual machine (VM) images in Infrastructure as a Service (IaaS) clouds, it is
essential to understand the level and pattern of similarity among VM images in real
world (IaaS) environments. This paper empirically analyzes the similarity within and
between 525 VM images from a production (IaaS) cloud.

Besides presenting the overall level of content similarity, we have also
discovered interesting insights on multiple factors affecting the similarity pattern,
including the image creation time and the location in the image’s address space.
Moreover, we found that similarities between pairs of images exhibit high variance, and
an image is very likely to be more similar to a small subset of images than all other
images in the repository. Groups of data chunks often appear in the same image. These
image and chunk “clusters” can help predict future data accesses, and therefore provide
important hints to cache placement, eviction, and prefetching.
Efficiently Storing Virtual Machine Backups:

Physical level backups offer increased performance in terms of throughput and
scalability as compared to logical backup models, while still maintaining logical
consistency. As the trend toward virtualization grows, virtual machine backups (a form
of physical backup) are even more important, while becoming easier to perform. The
downside is that physical backup generally requires more storage, because of file
system meta-data and unallocated blocks.

De-duplication is becoming widely accepted and many believe that it will favor
logical backup, but this has not been well studied and the relative cost of physical vs.
logical on de duplicating storage is not known. In this paper, we take a data-driven
approach using user data to quantify the storage costs and contributing factors of
physical backups over numerous generations. Based on our analysis, we show how
physical backups can be as storage efficient as logical backups, while also giving good
backup performance.
Allow Bandwidth Network File System:

Users rarely consider running network file systems over slow or wide-area
networks, as the performance would be unacceptable and the bandwidth consumption
too high. Nonetheless, efficient remote file access would often be desirable over such
networks particularly when high latency makes remote login sessions unresponsive.
Rather than run interactive programs such as editors remotely, users could run the
programs locally and manipulate remote files through the file system. To do so,
however, would require a network file system that consumes less bandwidth than most
current file systems.
Avoiding the Disk Bottleneck in the Data Domain Deduplication File System:

Disk-based De-duplication storage has emerged as the new-generation storage
system for enterprise data protection to replace tape libraries. De-duplication removes
redundant data segments to compress data into a highly compact form and makes it
economical to store backups on disk instead of tape. A crucial requirement for
enterprise data protection is high throughput, typically over 100 MB/sec, which enables
backups to complete quickly. A significant challenge is to identify and eliminate
duplicate data segments at this rate on a low-cost system that cannot afford enough
RAM to store an index of the stored segments and may be forced to access an on-disk
index for every input segment. This paper describes three techniques employed in the

International Journal of Engineering Research and Modern Education (IJERME)

ISSN (Online): 2455 - 4200

(www.rdmodernresearch.com) Volume I, Issue I, 2016

399

production Data Domain De-duplication file system to relieve the disk bottleneck. These
techniques include: (1) the Summary Vector, a compact in-memory data structure for
identifying new segments; (2) Stream-Informed Segment Layout, a data layout method
to improve on-disk locality for sequentially accessed segments; and (3) Locality
Preserved Caching, which maintains the locality of the fingerprints of duplicate
segments to achieve high cache hit ratios. Together, they can remove 99% of the disk
accesses for De-duplication of real world workloads. These techniques enable a modern
two-socket dual-core system to run at 90% CPU utilization with only one shelf of 15
disks and achieve 100 MB/sec for single-stream throughput and 210 MB/sec for multi-
stream throughput.
Building a High-Performance Deduplication System:

Modern De-duplication has become quite effective at eliminating duplicates in
data, thus multiplying the effective capacity of disk-based backup systems, and enabling
them as realistic tape replacements. Despite these improvements, single-node raw
capacity is still mostly limited to tens or a few hundreds of terabytes, forcing users to
resort to complex and costly multi-node systems, which usually only allow them to scale
to single digit petabytes. As the opportunities for De-duplication efficiency
optimizations become scarce, we are challenged with the task of designing De-
duplication systems that will effectively address the capacity, throughput, management
and energy requirements of the peta scale age.

 In this paper present our high-performance De-duplication prototype, designed
from the ground up to optimize overall single-node performance, by making the best
possible use of a node’s resources, and achieve three important goals: scale to large
capacity, provide good De-duplication efficiency, and near raw disk throughput. Instead
of trying to improve duplicate detection algorithms, we focus on system design aspects
and introduce novel mechanisms that combine with careful implementations of known
system engineering techniques.

In particular, we improve single node scalability by introducing progressive
sampled indexing and grouped mark and sweep, and also optimize throughput by
utilizing an event-driven, multi-threaded client/server interaction model. Our prototype
implementation is able to scale to billions of stored objects, with high throughput, and
very little or no degradation of De-duplication efficiency.
Ceph: A Scalable, High-Performance Distributed File System:

Ceph, a distributed file system that provides excellent performance, reliability,
and scalability. Ceph maximizes the separation between data and metadata
management by replacing allocation tables with a pseudo random data distribution
function (CRUSH) designed for heterogeneous and dynamic clusters of unreliable object
storage devices (OSDs). We leverage device intelligence by distributing data replication,
failure detection and recovery to semi-autonomous OSDs running a specialized local
object file system. A dynamic distributed metadata cluster provides extremely efficient
metadata management and seamlessly adapts to a wide range of general purpose and
scientific computing file system workloads. Performance measurements under a variety
of workloads show that Ceph has excellent I/O performance and scalable metadata
management, supporting more than 250,000 metadata operations per second.
PVFS: A Parallel File System for Linux Clusters:

As Linux clusters have matured as platforms for low cost, high-performance
parallel computing, software packages to provide many key services have emerged,
especially in areas such as message passing and networking. One area devoid of
support, however, has been parallel file systems, which are critical for high performance

International Journal of Engineering Research and Modern Education (IJERME)

ISSN (Online): 2455 - 4200

(www.rdmodernresearch.com) Volume I, Issue I, 2016

400

I/O on such clusters. We have developed a parallel file system for Linux clusters, called
the Parallel Virtual File System (PVFS). PVFS is intended both as a high-performance
parallel file system that anyone can download and use and as a tool for pursuing further
research in parallel I/O and parallel file systems for Linux clusters. PVFS and present
performance results on the Chiba City cluster at Argonne.

The provide performance results for a workload of concurrent reads and writes for
various numbers of compute nodes, I/O nodes, and I/O request sizes. We also present
performance results for MPI-IO on PVFS, both for a concurrent read/write workload
and for the BTIO benchmark. We compare the I/O performance when using a Myrinet
network versus a fast ethernet network for I/O-related communication in PVFS. We
obtained read and write bandwidths as high as 700 Mbytes/sec with Myrinet and 225
Mbytes/sec with fast ethernet.
3. Proposed Work:

The De-duplication method best suited to protect data in cloud. This process De-
duplicates data both across backups and within backups and does not require any
knowledge of the backup data format. The job can be system allocation can be
performed for the batch jobs with the sequence of job allocation. And the content
similarity is used for the de-duplications process and filtering the De-duplication
content. In the time interval, the job can be finished with the effective resources then
allocation can be in the order sequences. The included automates filtering, to help an
analyst in cloud with similar content by designating of Data duplication can be easily
removed by the content similarity algorithm. The workloads can be categorized as per
the order of the job work load can be assigned. The scheduling can be maintained as per
the sequence of the job within the time interval the particular job can be executed.
A. User Registration and Cloud Access: Access users only to have authentication
process before registration, Authentication process is always occurred prior to mobility
management process included location registrations and service delivery, and it also
ensures network resources are accessed by authorized clients and prevents resources
from any illegal client or damage. Before the registration of cloud services to ensure
whether the client is an authenticated or not to access cloud server. We can ensure the
information stored in the cloud is used judiciously by the responsible stakeholders as
per the service level agreements.
B. Indexing the Cloud Data: The based on requirements to prepare the dataset in avoid
de-duplication content. Indexing is nothing but consists of structured and unstructured
format. Unstructured format is an unarranged format. Sparse Indexing is based on the
reference format and capturing the repeated words queries. Indexing converts the
unarranged format into structured arranged format. This may be avoid the problem of
delay during searching. Sparse Indexing are used to quickly locate data without having
to search every database based on the queries is accessed.
C. Finding & Avoiding Similarity: Content similarity detection is typically performed
by means of De-duplication, which is broadly classified into static and content defined.
Static approaches split the input data in to equally sized chunks, which are then
compared among each other. In order to identify and eliminate duplicates. While simple
and fast, static approaches suffer from misalignment issues (i.e insertions or deletions
lead to the impossibility to detect duplicates).Comparison phase quantifies the degree
of similarity between indexing pairs belonging to the same data. And blocking the De-
duplication chunks using novel techniques. Novel technique strategy aimed at reducing
the user labeling effort in large scale De-duplication tasks.

International Journal of Engineering Research and Modern Education (IJERME)

ISSN (Online): 2455 - 4200

(www.rdmodernresearch.com) Volume I, Issue I, 2016

401

D. Allocating the Workloads Job Management Based on Content Similarity:
The resource can be allocated based on the dependencies of the each job. Based

on the dependencies the resource can be allocated. The Content Similarity is a statistical
methods to categorize a De-duplication and blocked the adjustable levels of granularity.
We cultrate the data set, so that it contains only one representation of each sequence for
quantifying and comparative studies. The included automates filtering, to help an
analyst in cloud with similar content by designating of Data duplication can be easily
removed by the content similarity algorithm.
4. Experimental Analysis and Results:

Implementation is often used in the tech world to describe the interactions of
elements in programming languages. In Java, where the word is frequently used, to
implement is to recognize and use an element of code or a programming resource that is
written into the program.

One aspect of implementing an interface that can cause confusion is the
requirement that to implement an interface, a class must implement all of the methods
of that interface. This can lead to error messages due to insufficient implementation of
methods. In general, the syntactical requirements of implementation and other tasks
can be a burden for developers, and mastering this is part of becoming an in-depth user.

Figure 2: System Architecture

There are multiple storage services for a user to store data. Meanwhile, to avoid
the problem produced by the centralized “trusted” third party, the responsibility of
SeDas is to protect the user key and provide the function of self-destructing data. The
brief structure of the user application program realizing storage process. In this
structure, the user application node contains two system clients: any third-party data
storage system (TPDSS) and SeDas. The user application program interacts with the
SeDas server through SeDas’ client, getting data storage service.

Implementation is the process of translating design specification in to source
code. The primary goal of implementation is to write source code and internal
implementation. So that conformance of code to its specification can be easily verified,

International Journal of Engineering Research and Modern Education (IJERME)

ISSN (Online): 2455 - 4200

(www.rdmodernresearch.com) Volume I, Issue I, 2016

402

So that debugging, testing and modification are eased. The source is developed with
clarity, simplicity and elegance.

The coding is done in a modular fashion giving such importance even to the
minute detail so, when hardware and storage procedures are changed or now data is
added, rewriting of application programs is not necessary. To adapt or perfect use must
determine new requirements, redesign generate code and test exiting
software/hardware. Traditionally such task when they are applied to an existing
program has been called maintenance.

International Journal of Engineering Research and Modern Education (IJERME)

ISSN (Online): 2455 - 4200

(www.rdmodernresearch.com) Volume I, Issue I, 2016

403

5. Conclusion and Future Enhancement:
We explored the impact of many factors on the effectiveness of De-duplication.

We showed that package installation and language localization have little impact on De-
duplication ratio. However, factors such as the base operating system. The Linux
distribution can have a major impact on De-duplication effectiveness. Thus, we
recommend that hosting centers suggest “preferred” operating system distributions for
their users to ensure maximal space savings. If this preference is followed subsequent
user activity will have little impact on De-duplication effectiveness. We found that, in
general, 40% is approximately the highest De-duplication ratio if no obviously similar
VMs are involved.

In future work we plan to explore several promising avenues. First, we did not
explore what happens when the groups are not operating simultaneously and/or access
common content at different times. How to leverage and anticipate such De-
synchronizations can provide further potential for improvement. Second, our approach
treats all chunks individually, both in terms of advertisements and exchanges. Thus, it
would be interesting to understand and exploit correlations between chunks.
6. References:

1. K. Jin and E. L. Miller, “The effectiveness of De-duplication on virtual machine
(VM) disk images,” in Proceedings of SYSTOR 2009: The Israeli Experimental
Systems Conference, ser. SYSTOR ’09. Haifa, Israel: ACM, 2009, pp. 7:1–7:12.

2. K. R. Jayaram, C. Peng, Z. Zhang, M. Kim, H. Chen, and H. Lei, “An empirical
analysis of similarity in virtual machine images,” in Middle ware ’11: Proceedings
of the Middleware 2011 Industry Track Workshop. Lisbon, Portugal: ACM, 2011,
pp. 6:1–6:6.

3. R. Schwarzkopf, M. Schmidt, M. R¨udiger, and B. Freisleben, “Efficient storage of
virtual machine images,” in Science Cloud ’12: Proceedings of the 3rd Workshop
on Scientific Cloud Computing Date. Delft, the Netherlands: ACM, 2012, pp. 51–
60.

4. Muthitacharoen, B. Chen, and D. Mazi`eres, “A low-bandwidth network file
system,” SIGOPS Oper. Syst. Rev., vol. 35, no. 5, pp. 174–187, Oct. 2001.

5. M. Rabin, “Fingerprinting by random polynomials,” Center for Research in
Computing Technology, Harvard University, Tech. Rep. TR-CSE-03-01, 1981.

6. B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottleneck in the data domain
De-duplication file system,” in FAST’08: Proceedings of the6th USENIX
Conference on File and Storage Technologies. San Jose, USA: USENIX Association,
2008, pp. 18:1–18:14.

7. C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W.Kilian, P. Strzelczak,J.
Szczepkowski, C. Ungureanu, and M. Welnicki,“Hydrastor:a scalable secondary
storage,” in FAST ’09: Proceedings of the 7thconference on File and storage
technologies. San Francisco, USA: USENIX Association, 2009, pp. 197–210.

8. F.Guo and P. Efstathopoulos,“ Building a high-performance De-duplication
system,” in USENIXATC’11: Proceedings of the 2011 USENIX Conference on
USENIX Annual Technical Conference. Portland, USA: USENIX Association, 2011,
pp. 25–39.

9. B. Nicolae, “Towards Scalable Checkpoint Restart: A Collective Inline Memory
Contents Deduplication Proposal,” in IPDPS ’13: The 27thIEEE International
Parallel and Distributed Processing Symposium, Boston, USA, 2013, pp. 19–28.

10. Z. Shen, Z. Zhang, A. Kochut, A. Karve, H. Chen, M. Kim, H. Lei, andN. Fuller, “Vmar:
Optimizing i/o performance and resource utilizationin the cloud,” in Middleware

International Journal of Engineering Research and Modern Education (IJERME)

ISSN (Online): 2455 - 4200

(www.rdmodernresearch.com) Volume I, Issue I, 2016

404

’13: Proceedings of the 14th ACM/I-FIP/USENIX International Middleware
Conference, vol. 8275. Springer Berlin Heidelberg, 2013, pp. 183–203.

11. K. Razavi, A. Ion, and T. Kielmann, “Squirrel: Scatter hoarding vm image contents
on iaas compute nodes,” in HPDC ’14: The 23rd ACM International Symposium
on High-performance Parallel and Distributed Computing. Vancouver, Canada:
ACM, 2014, pp. 265–278.

12. R. Koller and R. Raju, “I/o deduplication: Utilizing content similarity to improve
i/o performance,” in FAST ’10: Proceedings of the USENIX File and Storage
Technologies. USENIX Association, 2010, pp. 211–224.

13. B. Mao, H. Jiang, S. Wu, Y. Fu, and L. Tian, “Read-performance optimization for
deduplication based storage systems in the cloud,” Trans. Storage, vol. 10, no. 2,
pp. 6:1–6:22, Mar. 2014.

14. U. Deshpande, X. Wang, and K. Gopalan, “Live gang migration of virtual
machines,” in HPDC ’11: Proceedings of the 20th International Symposium on
High Performance Distributed Computing. San Jose, USA: ACM, 2011, pp. 135–
146.

15. S. Al-Kiswany, D. Subhraveti, P. Sarkar, and M. Ripeanu, “Vmflock: Virtual
machine co-migration for the cloud,” in Proceedings of the 20thInternational
Symposium on High Performance Distributed Computing, ser. HPDC ’11. San
Jose, USA: ACM, 2011, pp. 159–170.

